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BOOLEAN MATRICES AND GRAPH THEORY

Introduction. A net is a set of points between any two of which may be a

connecting line. We will consider direcied nets, in which the connecting lines

have a direction: if the line v,, cornecting points p; and p, is directed from
p; toward p,, then p; is called the origin of the line, and p, is called the
insertion of the line. In particular, we will restrict ourselves to nets in
vwhich there cannot be two or more lines in the same direction between the same
pair of points, and in which a line can only conncet two distinet points: such

a net is called a directed graph. Figures 1 a end 1 b are not valid directed
graphs; Fig. 1 ¢ is & valid directed greph.

The study of directed grephs has many applications in information and com-
puter science. The trees of the previouslsection ere directed graphs; the skele-
tons of flow charts are graphs; the state diasgrams to be studied in Part V below
are relat:d te directed graphs; and so forth. Information flow in communicaticn
netvork can be anralyzed in terms of directed graphs, as can social-structures and
many mathematical relationships. In this short section we can do no more than
present a bare introduction to this subjects nevertheless, its importance in infor-
mation snd computer science necessitates ils inclusion, however briefly, in this
survey.

The Incidence Matrix G. Associated with a directed graph is a Bcolean

matrix G, called the incidence matrix, in which gij = 1 if there is a line in

the graph with crigin Py and insertion p,, and gij = 0 otherwise. Thus for the

Y

directed graph of Fig. 1 ¢ we have

0 1 2 3

o fo o o o

G = 100 0 1 ¢
240 1 0 0

3 {01 0 0
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Note that if we renumbered the poinis as in Fig. 2 , then a different matrix
would result, even though the graph would have the came basic structure. For

the numbering of Fig., 2 we have

Y N =

[—2 — T N — B ]
-0 0O Loand
[— K — I — I — ] N
[— I — B 7 ]

If we wanted to show that the two matrices indecd represented the same basic

graph structure, then we would have to demonstrate that there is a renumbering,
or permutation, of the rows snd columns of G which would make it identical to
G”. Recall that when a column-unitary matrix multiplies a matrix on jts left,
the result is to permute the columns of that matrix. Similarly when a row-
wnitary matrix (with a singlc unit in each row) multiplies a matrix on its right,
it permutes the rows of that matrix. Since we must permute"L both the columns
and rowvs of G to get Gﬁ we must multiply G both on the left and right. To get
the same permutation of rows and columns, the row- and column-unitary matrices

must be transposes of each other. Thus if P is the desired permutation, then

P @GP = ¢ (1)
For our case we see from Fig. 2 that
01 2 3
oto 0 1 O
p= 110 0 0 1
20 1 0 o |
311 ¢ 0 O :
4 }
vhence from Eq. (1) we find ‘
”
0001 0000 D010 0001
0010@" OOIOQQ 0001 = 1 001
1000 0101 01 0040 0000
01 00 0100‘3 1000 0100

which is G”, as desired.

[éd
v
TA true permutation matrix&is a (rov or column) unitary matrix vwith a single

unit in each row and each column. If point i1 » point j, then ng =1 in P,
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For our case of directed graphs (i.c. wherc €55 = 0), it can bc shown that,
in generai,givcn two incidence matrices G end G°, all permutations P, if any
exist at all, tbat satisfy Eq. (1) can be generated by the following process:

Step 1. For cach rov J of G (vritten as e colwmn) and each row i of G~

(viritten as a row) for ]

i3 Jth rovw of G }th rov of G”
8¢ = [ writtenas & | g \written as &
column row
{531
632
- : & (ef, e, - &5y
g
97

Step 2. Form cvery product

10 200 ~Ju

T .-:s l . S 2 ;o--os J

vhere the @ are chosen, in some order, from 1, 2, ..., Jd, so that @ # @
(i.e. no two alphas are the same in the same product). EKetain only thosc Tk
that do not have an all-zero column or row.

form the permutation matrix P, with

Step 3. For cach such product T X

k
elements BN, = 1, zeros otherwice (i.e. with a unit c¢lement correspondirg
s O
i
-~

to cach term in the product). 1f

Pk -y ik

then P = étihis a permutation that salisfies Eq. (1).

TIf A is a matrix with a single column of elements 8,y and B is a matrix with

a single row of c¢lemenis t then the elements of the 0 (theta) product of

).j,
A and B, namcly C = A § B arc

c,, =ab + @ b
ij .t i

st




=

r..vw_,q.

™ T

————y- = T

As &n example, consider G and G as given above, namely

0000 0110
C = 0010 G- =8¢0
0101 1000
0100, 0000

Then for the Sij matrices we have

10 w 11 1111
g01 |1 1] g0z _Jo g03 {1111
1 1 . 0 1111
10 11 1111
’/
100 f\ ‘1 101 (b 111
glo {1001} git tr101] g12.lor11
011 o! joo1o 1000
1001 1 1o Lp 111
1001 1101 (b 111)
g20 {0110 g21 _loo1of g22_J1 000
1001 1101 0111
0110 0010 \} 00 0]
/
1001 (1 101 011 f)
§30 =011 0[ g31 10010 g32 {1000
1001 1101 0111
1001 110 1J 0111
\
Note that S°°, S°l, 802, Sla, 823, and 833 were crossed off tecause they each

had & zeros column. For the first two rows of matrices, we can form the products

100 1) 1101 5111
g03.g10 - |1 0 01| g03 g1l )1 1 01| g03 g12 |0 111
0110 0010 1000
1001 1101 0111
Neowr ij
Including the thirdApf 8Y matrices, only
(b 00 010 1) (b 001)
803.510.522 =1100 01 803.811'822 =100 0‘ 803.8’2.820 ='011 0‘
0110i 0010“ 1 000
1000 1000/- 0110)

0
and 593,817,521 = ?
0

oo o -
-0 - o
oo o -

necd be retained as having no all-zero columns (or rovs).

- b -
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Finelly, including the fourth row of Si‘j matrices, we find

(600?‘

0010 -¢q
1000 'k
0100)

L

e
as the product with no all-zero columns or rows, Thus
!

803.312.520.53] =

0123
ofco0o01
Pb=1l0010
2{1co0
3fo100
and certainly Pk + Tk' Hence
(0010\’,
P=Pt=°°°1(
k 01090
1ooo,l

is the desired permutation.

The Keachability Matrix R. A path from‘Pi to Pﬁ is & collection of points

‘Pi’ P, Ph, P ...Pr,P end the lines v 2 e Vigs vhere the

J ik* Vkn® Vnm

insertion of each line is the origin of the next, except for the last. If such

a path i‘rom}‘:.L lo I, sctually exists in a graph, then peint P, is said to be

°d J
reachable from point Pi in the graph. For instance, in Fig. 3 we sec that Pj
is reachable from P;, but;P; is not reachable from any other point on the graph.
= 1 if P, is reachable from

J J

,P;, and zero otherwisc. Notz that every point is trivially reachable from itself,

The reachability matrix R of e graph has elements r

and henee re. = 1 for all points.Pj. For Fig. '3 , the reachability matrix is

0123¢% 01 234
0 {11111 0 /01011
1 {01111 | 00100
R= 2 lo00111 with G = 2 100001
3 looo1o 3 loooo0oO
L o001 1 L, 00010

’

elearly G > R, for if Sjj =1, then P, is rcachable from Pi and bhence r.. = 1.

J

J

For any pointhi,WG can determine the sel of points thal can be rcached from Pi




T r— g

by inspecting the ifh rov of R: the set corresponds to those columns wilh units
in that row. Similarly we can find the set of points from which/P; is reachadble
by inspecting the i?h cclumn of R: the set ccrresponds to those rows with units
in that column.

The matrix R can be obtained from the mairix G of a graph as follows:

Note that G gives the "one step" rcachability of the graph. If we form

¢ ® ¢ = ¢

we get the "two step" reachability of the graph, i.e. all those points that can

W

be reached from another point in twe lines. For instance, for Fig.

01234 0123%4

0 (01011 0 (00110

1 loo10c¢ 1 Joo0o001

G= 2 {oo0001| andG ® G= 2 looo1o0
3 {00000 3 {60000

L \o 0010 v looo0o0o0

Similarly, a "three step" reachable graph can be constructed by forming

c®c ® ¢ = 63

For our illustration,this becomes

00001
: 00010

(c ® 6) ® ¢ =lo0000
00000

00000

This process can be continued to find an "n step” reachable matrix G". Nov the
reachability matrix R includes all reachable steps, and the unit diagonal
matrix T as well, That is,

R=TI+G+C2+G2+ ...+0"

vhere I has the elements Gii =1, Gi‘ =0 for i #J. Therefore, to construct
J 0

the reachability matrix R from the incidence matrix G, (logically) add to I the

i b




matrix G an¢ its successively higher powers until no ncw unils can be included

in R. For our case we have

11111
» 0111)
1 R=1+6+62+6G6¥=]p0111

OOOIOs

0001

\D-l

Finally, note that since I A = A (¥ Iﬁ;:—have '-'-:J GrG2h

(1 +G)2

n

(1+6)N(T+6)=TI+¢G+¢2

or in general

n

(T+6)"=TI+G+G2+ ... 4G

Then, if no new units can be included after the gﬁh siep,

L ' R=(I+0)"

For our example, we have

11011 (;'l 111 11111
01100 01101 01111

(146) ={o 031 01| (T#6)2 =jp 011 1] (I+6)3 =lp 01 11
00010 00010 0001 0

0011 00011 00011

gits

whence R = (I4G)3

Connectedness and Components. A directed graph is called strong, or

graph. A directed graph is weakly connected vhen for every two peints, al least

onc point is recachable from the other (but not necessarily the reverse). A
direccted graph is unconnected when there exist at least two poinits neither of

vhich is reachable from the olher, but there is at leasl a scquence of lines,
disregarding direction, between every two pcints. A directed graph is disconnected

vhen it is not connected in any of the just-mentioned ways. Figure 4 illustrates

the types of connectedness of graphs.




If a graph is strongly cornected, then Yi nust be reachable from,Ps and

fa must be reachusble from P;, for every peir of points,l‘i ard P, of the graph.

J
Hence, if J represents the matrix sl) of vhose elements are units, then
R=1J

if and only if the graph is strongly connected. If the graph is weakly connected,

then Pi nust be reachable from Pj or PJ must be reachable from Pi' Hence if Rt
is the transpose of the reachability matrix R then
R+R =7

if and only if the graph is wezkly connccied. Of course strong connectedness

implies weak ccnnectedness. For our illustrations of Fig. 4 , we have:

01 2
0 (111
(a) R= 111'.!
2 (111
c1 2
~
o 111 ¢ (P10 ¢ 111
(v) R= 1 111/ R =|110 R+R =111
2 Lowoa), 111, 111
01 2 )
0 {100 t (110 g [11 0]
(c) R=1\111 R =191 0 R+R =111
2 loo01), 011}, 01 1]
01 2
o (10 ¢ (100 + (100
(d) R= 1 o011 R"=1p10 R+R =101
2 loo1), 011}, 011

Strong subcomponents of & graph can be recognized. Fcr instance, consider

Fig. 5 with the matrices

0123145 R
0 (011000 {111110
1 \1 01000 111110
¢ = 2 0001100 andR=°°111°
3 /000010 001110
vt Joo100o0 001110
s (ooo0o01 0 001111

Now if,P} is reachable from/ﬁi, then roo = 1; if Pi is reachable from'Ps then

J

t o
s = = ) it > ‘od > Re 3 ;
Iij rji l. Hence the unit elewents of the product R-R™ represent mutually

= 18 =

AU ————
.

SN L o Mt v

]
]
= a2 _a_‘ﬁl«i

&l




reachablc pairs of points which are thereforc members of some strong subccuponent

of the graph. For our illustration of Fig. 5 , we have

012345

111110 110000) oflloooo]
111110 110000 111 110 0010
REV=]002110 111111)_ 2]oo0j1 1140
001110 111111 3001110‘
1001110\ 111111 & |0 042 1130}
001111) (000001) 50 0jo 00 )

Here the dashed lincs reprecscent a decompositicn of the matrix into the strong
subtcomponents of the graph, namely point sets {Pg, F;}, {Pz’Pé)PL}, snd {Pg}.
Note that a single point is always a strong subcomponent of itself (why?). The

complete decompositien'would be charactcrized by

. _ (01 - (11
(o) ¢ {1 o} k= 1)
010 111
{P%P3'P1,} 2 G=loo1] R=l111
00 111

{ps} e=(1) R = (1)

Vle can construct a new directecd graph, calle@ the condenscd graph, tial

displays the relationships of the strong components (see Fig. € ). The con-
densed greph will have points corresponding to the strong components, say Q;,
Qz, and Q3 for {P@PI}’ {P,,P3,P,} end {P5}. If at least one line connects a
point of one comporient with a point of another, then there will be e line in
the same direction connecting the corrcsponding points in the condensed graph.

For our illustration, from the ful.-sized G above (or see Fig. & ) we will

i

have a 1ine/Vb1 connecting Gp and Q; and a 1ineAconnecting Qp and Q) (sec

Fig. 6 ). For our condenscd graph,ve nov have

2
0 1 0 :
G= { 01 0) RHRC =
’) 011‘

(=2 = = B ]
[ e T
o oo N
[ S 4
=
Il
N~ o
\
o — -~
[
‘—l‘—lo
— e P
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Of course, the condensed graph is not strougly conrected (why?) and for our
example is uot weakly cornccted. Another very importsnt question can be answered
condansed geavh, mamely, Whil s the waniuen, szboof an*Sc( tae oigimal
from our, grapi: frvom vhich all other points can be reached. Clearly, if we find
such a mirimun set for the condensed graph, ther we have answered the question
for the criginal graph, since a point chosen for the condensed-graph case can be
replaced bty any onc of the points of the strong component it represents. To find
the minimum set for the condensed graph, we chose whose points which corregéond
to columns with a single unit in the R matrix. We know, of course, that such
columns (with a single unit) must exist in the condcnsed graph (why?). This
single unit simply mcans that the point is reachable from itself, All remaining
columﬁs (vith more than onc unit) will then correspond to points reachable from
the otker points. For instance, for cur example column zero and column two of
the condensed R have single units, corresponding to pofnts Qg and Q; (see Fig. G).
Hence & minimum set of points for the original graph (see Fig. 5 ) could be
‘Pl.(from Qo) and Fg (from Q,) and all points of the graph can be reached from one
of these. Such a minimum set of points is called a point basis for the grarh.

Application of Arithmetic Metrices to Graph Theory. Up to row in our treat-

ment of graph theory, we have been utilizing only Boolean matrices with Booléan;
or logical, operations. In this paragraph, we will turn to the use of arithmetic
matrices using crdinary arithmetic operations in matrix multiplication. We will,
hovever, again starl with the incidence matrix. Our first obsérvation is that
g?) of Gn, the gﬁh arithmetic power of the incidence

matrix G, is the number of paths irom P& to F

the value of an element g

of length n (vhere by the length

J

of a path we mecan the mumber of lines or steps required). For instance, for the

graph of Fig. 7

(o 111 0) 11022 {b 3122 1404 5)
00011 01001 01011 014 /0.7 5
G=!11010] G =lo1121 3=!13023 G =louviuy
Lo 0001 01000 00011 . Jo1r1o001
01000 00011 v1001 01011,

- 10 -

e

o
= ~oTg




R vr~=gywwy §

For G2, note, for example, that there are two patks of length 2 frem 19 to P3,

one throu;gh P, and the other through P,. For G3, note that trere are three puths

of length 3 from Py to P (nsmely PoP3PLF), FoP)P.F], and PoFaPgP)), and so forth.
For G" t.here' are five paths cf length I from Py to P, (namcly PbPzP'QI"3P],, e fafol J," )

}’.01‘2?'1,}‘31’1, . P'of".P'ql’l P, and PoP3P PP, ).

If we form the matrix T = 6 X 6 then

Vi3 5851 85 T By By e Py 8y,

Henee if both sy ané gjk are units, a unit will be contributed to the sum eom-

posing 'ti . ZElements 85x end both being units means that lines go from both

3 €5k

Py and 'Pj to I‘k. Hence the value of tij

insertions for lines having origins at both ’Pi and }"J. For diagonal elements of

is the number o>f points that are

T, namely tii’ the value is the number of points that arc insertions for lires

heving P'i as origin, i.e. the namber of lines em:nating from P'i. For the

illustration of Fig. 7 , we have
01110 00100 31201
% 00011 10101 12110
T=GYG6 = 111010 X (10000 = 21301
00001 11100 01010
01000 01010 10101

(%

Thus, for example, there are three lines eminzting from (having their crigins at)
Po, tvo 1‘rom/P'l, three from 'P'z, ani one each from ,153 and P','. By similar reason-

ing, we ean see that for matrix H = Gt )( G, the valuc of hi is the number of

J
points that are origine for lines having insertions at b~th I"i and,PJ, and that
value of thc diagonal elements hii is the number of lines converging on P‘j . For

our illustration

) .
11010

L. 13120
H=G6"XG= 1p1110

: ol 18}

0001 2

Thus ¥3, for instance, is the point of insertion of three lines, anc so forih,

-k -

Al




Finally, lel us observe thal we can easily construct a distarce matrix D

for a graph by observation of the sequence of Boolean matrices G, Gz, G,

n

e e G

. § ! N\ th n
b is found by exsmining the sequence of i Jjy, elements

. The value of di

J

of thc matrix sequence; the exponent of the matrix in vwhich this element first

becomes & unit is the value of di We must, however, use thc conventions that

e i e S j )

(;'point and itsclf the di;tancglkptweeg;is 0, and between two points for which

there fs ro cornecting path the distance is =. For instance, for Fig. 8 we

have
0100 0010 1001\ 0100)
c=10010) g2_|1001] 53_{0200; gt _J0010
1001 01060 00110 1001
0000 ho 000 0000 0000
The distance matrix becomes
0123
p=]2012
1201
owaonl

S| C NS
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